

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

1

Paper-ID: CFP/1253/2019 www.ijmdr.net

DESIGN AND DEVELOPMENT OF A FARMER’S

SUPPORT PROGRESSIVE WEB APPLICATION (PWA)

SYSTEM
(Paper ID: CFP/1253/2019)

Robbin Mchinzi,

Dept. of Information, Communication and Technology

School of Engineering,

Information and Communications University

Lusaka, Zambia,

robbinmchinzi@gmail.com

Mr. Lameck Nsama

Dept. of Information, Communication Technology

School of Engineering,

Information and Communications University

Lusaka, Zambia

Lamecknsama64@gmail.com

ABSTRACT

The use of technologies is found in every field

from education to health, research, agriculture

and many more fields. Most of the businesses

have now adopted Internet as their business

platform and the trend seems to be increasing.

Thus, there is a need for developing fast, reliable,

engaging and robust applications.

Native and Web are two major types of

applications. Native apps are platform dependent

for instance (Android, iOS and Windows) built

using specific programming languages and

Software development

Kit; on the other hand, web apps are platform

independent. Websites which in many ways look

and feel like native applications are run by a

browser and typically written in HTML5. Native

apps have full access to the device hardware

while web apps still lack some of the access.

During the past few years, the use of native

mobile applications has shown growth as

compared to mobile web. Web apps are behind

native apps in terms of performance, reliability

and engagement. Businesses and developers often

see the need to develop native mobile

applications to overcome the limitations that the

web as a platform imposes on mobile devices.

When it comes to user’s reachability, native apps

are behind web apps. Native apps take more

resources and time to develop, maintain and

distribute applications for specific platforms.

Also, native app publishing is a tedious process.

In addition, to use the native app, users need to

go through many steps which include signing up

to the respective store, checking the memory,

downloading, finalizing download by installing

and finally opening to use it. A study revealed

that, on average, an app loses about 20 % of its

users for every step between the user’s first

contact and start to use. (Gabor Cselle, “Tales of

Creation,” 23 10 2012) Many users also find this

process difficult and daunting.

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

2

Paper-ID: CFP/1253/2019 www.ijmdr.net

I. INTRODUCTION

Progressive Web Application (PWA) is a

catchphrase in the technology sector of the web.

Many blogs are talking about it, and different

companies like Ali Express (Ali Express, 2017),

Twitter, and Housing.com are adopting this new

type of web applications. PWA’s gives the user a

reliable, fast and engaging experience, much like

that of native application. A PWA is a web

application that is enhanced with some technologies

that allow for native-like behavior in a mobile

device, while still functioning in a desktop browser.

It can be added and launched from the home screen

and should load instantly, regardless of the network

connection. This is possible with the help of Service

Workers, a JavaScript Worker that allows caching

content for offline access and for push notifications.

A service worker is a script that runs in the

background of your browser. It is a JavaScript

worker that runs separately from the web page, so it

cannot access the Document Object Model (DOM),

a programming interface for HTML documents,

directly. Instead, it communicates with the web page

through an interface. Service workers allow

developers to use features such as push notifications

and offline functionality, two of the things that make

a web application progressive. They also allow one

to control how to handle network requests, for

example, to serve cached content. Service workers

are as of now supported by Firefox, Opera and

Chrome browsers, and both Edge and Safari have

shown hints of supporting them. Web applications

are often described as being cross platform. They

are accessible from a multitude of browsers, running

on different operating systems. In 2014, the number

of global users accessing the web on mobile devices

surpassed those accessing it on a desktop

(Mehlhorn, Nils. 2016/2017). This shows that

making your web applications mobile-friendly is

more important now than ever. Companies often see

the need to develop native mobile applications to

overcome the limitations that the web has a platform

imposes on mobile devices. In many cases, they

have to develop their application for the web, iOS,

and Android. Developers have used web

technologies to develop cross-platform mobile

applications with tools like Cordova (Google

Chrome Developers. Opening Keynote (Progressive

Web App Summit 2016). And Phone Gap

(comScore Inc, 2016). These applications are

installable from the respective operating systems

application store, and run inside a native

environment, with all features available to a native

application. Taken out of this native environment,

these applications fail to deliver this experience due

to browser constraints. Progressive Web

Applications (PWA) could solve this problem. A

PWA is a web application that aims to deliver a

native-like user experience on a mobile device, such

as offline support and push notifications (Google

Inc2016, Beverloo, Peter, et al, 2017).

Motivation and Significance of the study

Web development is moving forward at a

tremendous pace all the time. Mobile access of the

web has already surpassed desktop access

(Mehlhorn, Nils. 2017) and making web

applications that works seamlessly on mobile

devices is more important than ever. Many

companies are facing a challenge when developing

applications (Osmani, Addy. 2017) often they need

to develop for three different platforms iOS,

Android and the web. Cross platform frameworks

like Cordova, Xamarin and React Native have tried

to solve this for the mobile platforms with a write

once and use everywhere approach. What if one

application that worked on all these devices was

developed? This is what Progressive Web

Applications wants to solve. This could save both

time and money for many developers and

companies that need to develop applications for all

these platforms.

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

3

Paper-ID: CFP/1253/2019 www.ijmdr.net

Scope and delimitations

This research will focus on design and

development of an application that will try to

close up a gap between a web and a mobile

application by using a single codebase. To

demonstrate an application farmer’s support

progressive web application will be designed and

developed for providing weather and climate

information so that farmers could take appropriate

actions depending on the weather depicted by the

application. The report will not focus on

providing solutions to any other technological

challenge’s farmers in Zambia or any other part of

the World are facing this is due to limited time.

Problem statement

Many companies are facing the problem of

developing different applications for different

platforms. They often need to develop two mobile

applications, one for iOS and one for Android. On

top of that, they need a web application that

works well on both a desktop and a mobile device

(Google Inc. 2016, Beverloo, Peter, et al.2017).

Web applications are somewhat limited today

when compared to native mobile applications, but

are moving forward all the time. We want to

design and develop an application that can work

as a web at the same time as a mobile app, and

that application is a Progressive Web Application

which can compete with a native application

when it comes to performance, (Rebecca

Fransson VT, 2017). When it comes to user’s

reachability, native apps are behind web apps.

Native apps take more resources and time to

develop, maintain and distribute for specific

platforms. Also, native app publishing is a tedious

process. In addition, to use the native app, users

need to go through many steps which include

signing up to the respective store, checking the

memory, downloading, finalizing download by

installing and finally opening to use it. A study

revealed that, on average, an app loses about 20

% of its users for every step between the user’s

first contacts and start to use (Mehlhorn, Nils,

2017). Many users also find this process difficult

and daunting. This is a huge disadvantage for

both companies and developers. Both the web and

native platforms have their own shortcomings, so

there was a need for a platform which can

combines the capabilities and experiences of

native apps with the reach of web. Progressive

Web App could simply be that platform.

Specific Objectives

The substantive specific objectives of this project

were as follows;

1. To illustrate the characteristics and

development of a Progressive web

application (PWA)

2. To describe Native and web applications as

we try to combine the beauty of both

platforms.

3. To contrasted the results from objective

number 2 with challenges from the field of

mobile cross-platform development.

Research Questions

RQ1 what are the characteristics of a progressive

web application?

RQ2 what are the beauties of a web and a mobile

application?

RQ3 what are the challenges of web and a mobile

application?

Review of the Literature

The literature on cross platform app development

is broad. Leaving out papers in which cross-

platform considerations are a side topic, there are

several particularly notable categories of papers.

First, papers present work on the creation or

improvement of a specific framework (e.g.

(Google Inc. 2016), (Henry, Alan.2015), (Russell,

Alex.2016)). Typically, the frameworks represent

one specific approach towards cross platform

development or seek to advance the technological

possibilities into a particular direction. Second,

papers address one specific framework, often in a

case study like fashion (e.g. (Savkin,

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

4

Paper-ID: CFP/1253/2019 www.ijmdr.net

Victor.2016), (Progress Software

Corporation.2017)). Such work typically seeks to

explore certain aspects of a framework or to

assess its feasibility in predefined contexts. Third,

papers combine work with several frameworks,

usually including a comparison (e.g. (Lync,

May.2016), (Google Inc.2017), (Progress

Software Corporation.2017)), focusing on giving

advice (e.g. Google Inc.2017), or looking at

particularities (e.g. Narayanan, Anant.2013).

These works can help with decision making and

they may also contain such contributions to

theory that enable an understanding of which

approaches excel under which circumstances.

Fourth, there are meta studies, which make use of

the first two kinds of papers. Especially notable

are studies that propose categorization and

comparison frameworks. As part of such,

exemplary comparisons have been carried out.

Therefore, the fourth kind of papers provides the

gateway to most other relevant work. A number

of papers provide a comprehensive overview of

cross-platform technology and how existing

frameworks can be assessed. The most widely

cited paper by Heitkotter ¨ et al. is already from

2013 (Verbruggen, Eddy.2017). The authors

propose an evaluation framework. They have also

exemplarily applied it to several development

approaches, including Web apps and native apps

as benchmarks. An extension of this original idea

has been presented in 2016. (Google Chrome

Developers.2016). This work does not only

provide a more extensive catalogue of evaluation

criteria but also tries to include weighted

evaluation that cater for novel device categories

such as wearables. Several authors have

conducted work that takes similar aims (Google

Inc.2017), (VideoSpike LLC. 2017), (Lee,

Andrew.2013), (Ross, David, Shepherd, Eric and

Mills, Chris.2016), (Google Inc.2017), (Firbase

Inc.2017). All of these papers support a deepened

understanding of cross-platform app development

as a whole.

Related Works

A lack of literature covering Progressive Web

Apps has already been identified by a recent

position paper (Popescu, Andrei.2016), which

brought the concept of Progressive Web Apps to

the academic communities. The paper gives a

holistic introduction to PWAs, as well as some

initial research findings and thoughts. Research

was based on three apps: one hybrid app, an

interpreted app, and a PWA. Some initial

performance measurements were conducted and

the generated app sizes were compared. This

paper additionally presented a list of possible

further research areas and topics to be explored.

While this paper can be seen as a kind of shorter

predecessor to our article, it must be ascertained

that to a large extent the current body of

knowledge is made up of literature published by

developers, practitioners, and the industry in

general. Practitioners and the industry continue to

put efforts in implementing PWA characteristics

into their Web sites, as discussed in detail in

Section 3.4. Little progress within academia can

so far be recorded. The academic contributions

identified are few in number. Malavolta et al.

(Knight, Robert, Mattisson, Jonas and Blackburn,

Nathaniel.2017) makes an interesting contribution

discussing energy efficiency of Progressive Web

Apps, and the energy impact of Service Workers.

Their research includes measuring energy

consumption using different devices and

scenarios. Except from the previously discussed

literature, little else has been identified directly on

the topic of PWAs within academia. Outside of

academia, in the Fas paced world of JavaScript

and the (mobile) Web, articles and discussions on

PWA proliferate. As discussed in Section 3.4, the

Google I/O 2017 conference featured seven PWA-

related talks, some highly technical, some rather

business-related. In 2016, Google also hosted the

first Progressive Web App Developers Summit

(Progress Software Corporation.2017), as an

effort to further advocate the concept to

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

5

Paper-ID: CFP/1253/2019 www.ijmdr.net

developers and the industry. While practitioners’

enthusiasm must of cause be weighted carefully as

Google seems to rally for PWAs, the spread of

interest is nonetheless remarkable. Multiple books

on PWAs either have been published or are in the

process of being written, e.g. Hume’s early-access

book, a technical step-by-step textbook for

building PWAs. Published on O’Reilly also as an

early-access book, Ater Tal aims to teach various

technical aspects of PWAs from a mobile native

point of view, suggesting he is Bringing the

Power of Native to the Browser. The literature

situation suggests numerous research possibilities,

as discussed in Section 4.2. Quite notable is the

lack of discussion of PWA development in the

realm of iOS, owed to the current lack of support.

While missing support by Apple might be a major

hindrance for the spread of PWAs, practitioners

began to question whether Apple can retain its

position (Tsonev, Nikolay and Vakrilov,

Alexander.2017). The adoption of new standards

in browsers, especially the specification for

service workers, allowed for a further evolution of

web development (Russel, Alex, Song, Jungkee

and Archibald, Jake.2017). In 2015, the Google

Chrome engineer Alex Russell took a closer look

at these trending characteristics and labeled the

corresponding web applications as progressive.

According to Alex Russell, this new class of

applications delivers an even better user

experience than traditional web apps are able to”

(Russell, Alex.2017). This improved user

experience it is achieved by the usage of

capabilities which ordinary web applications lack.

Compared to the mobile web, users spent a

considerably high amount of time on mobile apps

(see Figure 1). The engineers behind Progressive

web applications substantiate this fact with the

inferior capabilities of web applications on

mobile. Without these, they would just not be able

to be as engaging as native mobile apps were

(Google Chrome Developers. Sumit.2016). after

the native app is installed, it enjoys several

benefits over its web-based complement. An icon

on the user’s home screen and push notifications

allow them to reconnect with users in convenient

ways. So far, web applications would not have

these chances for making the user come back

(Ater, Tal. pp. 12-13).

II. METHODOLOGY

Rapid Application Development (RAD)

methodology was used in the designing and

development of this system. Software design is the

process by which an agent creates a specification of

a software artefact, intended to accomplish goals,

using a set of primitive components and subject to

constraints. It refers to either all activity involved in

conceptualizing, framing, implementing,

commissioning and ultimately modifying complex

systems or the activity following requirements

specification and before programming. In RAD

model the components or functions are developed in

parallel as if they were mini projects. The

developments are time boxed, delivered and then

assembled into a working prototype. Advantages of

the RAD method:

Integration from very beginning solves a lot of

integration issues;

1. Reduced development time.

2. Quick initial reviews occur

3. Increases reusability of components

4. Encourages customer feedback

Disadvantages of RAD method:

Only system that can be modularized can be built

using RAD

1. Depends on strong team and individual

performances for identifying business

requirements

2. Requires highly skilled developers/designers.

3. Inapplicable to cheaper projects as cost of

modeling and automated code generation is

very high

4. High dependency on modelling skills

http://www.ijmdr.net/
../../AppData/Roaming/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/Word/Final%20year%20Research%20Report%202019%20increased.doc#page11

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

6

Paper-ID: CFP/1253/2019 www.ijmdr.net

DESIGN

The design was implemented by using the

technologies and languages listed below:

i. PHP this is a general-purpose scripting

language that is suitable for server-side web

Development. PHP generally runs on a web

server. The PHP code is embedded into the

HTML source document. Any PHP code in a

requested file is executed by the PHP runtime,

usually to create dynamic web page content.

It can also be used for command-line

scripting and client-side GUI applications.

PHP can be deployed on many web servers

and operating systems, and can be used with

many relational database management

systems (RDBMS) and it is available for free

- (Mwape, 2017).

ii. HTML5 HTML stands for hypertext mark-up

language, and the hypertext refers to the fact

that HTML makes it so that you can click on

links in web pages. That’s the hypertext. The

words mark-up language just means that it is

something that you use to mark-up normal

English to indicate things. Each page contains

a series of connections to other pages called

hyperlinks. Every web page you see on the

Internet is written using one version of HTML

code or another. HTML code ensures the

proper formatting of text and images so that

your Internet browser may display them as

they are intended to look. Without HTML, a

browser would not know how to display text

as elements or load images or other elements.

Hypertext Mark-up Language was first

developed by Tim Berners-Lee in 1990

iii. . iii. MySQL MySQL is a freely available open

source Relational Database Management

System (RDBMS) that uses Structured Query

Language (SQL). SQL is the most popular

language for adding, accessing and managing

content in a database. It is most noted for its

quick processing, proven reliability, ease and

flexibility of use. MySQL is an essential part

of almost every open source PHP application.

Good examples for PHP & MySQL-based

scripts are WordPress, Joomla, Magento and

Drupal. One of the most important things

about using MySQL is to have a MySQL

specialized host.

iv. JAVA SCRIPT JavaScript is considered to be

one of the most famous scripting languages of

all time. JavaScript by definition is a Scripting

Language for the World Wide Web. The main

usage of JavaScript is to add various Web

functionalities, Web form validations, browser

detections, creation of cookies and so on.

JavaScript is one of the most popular scripting

languages and that is why it is supported by

almost all web browsers available today like

Firefox, Brave or Google Chrome.

Progressiveness (Characteristic: Progressive)

For native implementations the barrier of

standardized APIs is non-existent and therefore

any device capability provided may be used in an

application. Yet, this also leaves the problem of

handling different feature sets to the application

code itself. Backwards compatibility has to be

ensured so that the target audience is not limited

to a certain system version or specific device. On

the Android platform, this aspect is generally

covered by the usage of designated support

libraries. These allow for backward-compatible

implementations of import, core platform

features” (Google Inc.2017) and may be used to

create more modern app interfaces on earlier

devices” (Google Inc.2017). Ideally, this ought to

be leveraged by a NativeScript application.

Alternatively, different approaches for providing

progressive behavior may be applied.

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

7

Paper-ID: CFP/1253/2019 www.ijmdr.net

Progressive web application

Progressive Web Application is not a new

technology or framework rather it is best

practices which have been adopted by the web to

give a native app like feeling to the user.

Components such as Service worker, App Shell,

Web App Manifest and Push Notification, which

are discussed in the following section, work

together to give native like feeling to PWA. It can

be installed on the user’s home screen with one

tap. A user can enjoy full-screen experience

without going through the hassle of the

downloading process. It loads faster even on a

flaky network and works offline. It gradually

develops with inter-action and sends relevant

push notification thus

Increasing user engagement

The popularity of PWA is growing at a very fast

pace in the field of e-commerce, business, online

news portal and other fields because of its

peculiar characteristics listed below as follows:

Progressive

PWA works for all user on all browser and builds

up continuously; taking the benefits of features

found in user’s device and browser.

Responsive

PWA‘s UI fit on all devices forms, factor and

size: mobile, desktop and tablet. Responsive

feature is achieved using the material design, fluid

grid concepts, CSS3 media queries and flexible

images. (Google Inc.2016).

Home screen Shortcut

Due to W3C web app manifest and service

worker registration scope, search engines identify

PWA as an application. It also increases the

probability to be found easily on search engines

compared to the native app.

Native App-like

Implementation of design concept App-shell

architecture makes PWA unique and divide

application functionality from its content with

least possible page refreshes to give native app

look. PWA, when launched from the home

screen, has an entirely native app like look with a

splash screen.

Connectivity-independent

Implementation of service worker makes it able to

work offline and give good performance even on

a flaky network. PWA does not treat loss of

connectivity as an error, but as an eventuality,

which can be planned for, and handled with grace.

Fresh

New content published gets an update once the

user is connected to the Internet due to the service

worker update process. Application shell and

content, after it is cached al-ways load from the

local storage.

Safe

Implementation of HTTPS connection and SSL

certificate to serve the page is a must to prevent

man-in-the-middle attacks, password intruding

and making sure content is not manipulated.

Push Notifications

Push API and Notifications API make the user

more likely to revisit PWA by the user using push

notifications. PWA can receive messages pushed

from the server, which can be shown as a

notification, and the user is notified about the

updates. This helps for reengagement and

bringing the user back to the application.

Progressive Web Apps’ notifications have a

completely native feel and are like those of native

app notifications. (Lync, May.2016)

PWAs have low friction as they are a product of

the web, i.e. faster and cheaper to develop

lowering the user acquisition costs and always up

to date. However, PWA faces some challenges. It

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

8

Paper-ID: CFP/1253/2019 www.ijmdr.net

has issue with cross browser support. Google

Chrome, Chrome for Android, Samsung Internet

has good support for PWA while Firefox and

Safari still lack good support. PWAs also have

limited functionality as they cannot access all

device-specific hardware. They can only support

hardware that is supported by HTML5. (Ater, Tal.

2016). It also lacks the cross-application login

support.

Native apps

Native apps are platform dependent (Android,

iOS, Windows) built using the specific

programming languages, SDK. Developers should

stick with Java for Android, C# for windows and

swift for iOS. Native apps have full access and

take full advantage of device features such as

access to the accelerometer, camera, compass,

GPS, incorporate gestures and APIs, thus provide

great UI, UX, performance and reliability. Native

application is installed on the user’s device via

specific app stores (Apple’s app store or Google

play store).

Native apps are platform dependent thus cannot

be deployed on multiple platforms. The cost is

high and development time is longer. A user must

install the application via respective store on

device to use thus set drawbacks if the user wants

to use the application just one single time or

periodically. Also, updating native app is tedious.

Hybrid apps

Hybrid apps are platform independent built using

web technologies HTML5, CSS 3 and JavaScript

wrapped inside a native container Cordova. Once

the app is developed, it can be deployed on multiple

platforms. Hybrid apps have access to most device

features like native but when it comes to 3D, fluid

animations, multi-touch, graphics, transition and

gaming, their performance decreases. However, the

cost and time of development is lower than native.

Hybrid apps should also be installed on the device

and need to be updated from time to time Hybrid

apps are deployed in a native container that uses a

mobile Web View object. When the app is used, this

object displays web content thanks to the use of web

technologies (CSS, JavaScript, HTML, HTML5). It

is in fact displaying web pages from a desktop

website that are adapted to a WebView display. The

web content can either be displayed as soon as the

app is opened or for certain parts of the app only i.e.

for the purchase funnel. In order to access the

devices’ hardware features (accelerometer, camera,

contacts) for which the native apps are installed, it is

possible to include native elements of each

platform’s user interfaces (iOS, Android): native

code will be used to access the specific features in

order to create a seamless user experience. Hybrid

apps can also rely on platforms that offer JavaScript

APIs if those functionalities are called within a Web

View.

PWAs are meant to provide remedy. In the right

environment they can perform in an app-like

fashion. They are able to send out push

notifications, launch in hardware-accelerated full-

screen and use a wide range of sensors. Various

innovative interfaces like the Push API or

Geolocation API are making this possible

(Beverloo, Peter, et al. 2017) (Popescu, Andrei.

2016). Hereby, features which were previously

reserved for native applications are made accessible

in a standardized way. In concept, PWAs are meant

to be on a par with native apps regarding their

capabilities (see Figure 2).

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

9

Paper-ID: CFP/1253/2019 www.ijmdr.net

Figure 2 Envisaged classifications of PWAs regarding c

apability and reach (Google Chrome Developers. 2016)

The average monthly audiences of mobile web

properties are about three times the size of the ones

of comparable mobile apps. In addition, the mobile

web audiences grow with twice the speed of their

counterpart (comScore Inc. p. 15). This means that

web apps have a major advantage regarding reach

on mobile systems. A PWA is meant to leverage

this fact by being just that eventually: a web

application.

“Establishing app audiences is harder, but their real

value is in their loyalty.” (comScore Inc. p. 19)

Although the web predominates in terms of

audience size, the engagement of their audiences

needs to be considered, too. As already stated, the

time spent on apps is overtaking the mobile web by

far. Users show far more engagement for them. Yet,

this engagement is mostly limited to a handful of

apps (comScore Inc. p. 30). PWAs are supposed to

combine the loyalty for native applications with the

reachability of the web. Several approaches in the

field of cross-platform development stem from the

incentive for building mobile applications with web

technologies. Solutions like Apache Cordova

bundles web resources into a native application

wrapper. This workaround allows for building

applications with the means of web development

while leveraging native features (Mehlhorn, Nils.

pp. 19-21). In theory, with PWAs it should no

longer be necessary to deliver a web application in

any kind of proprietary native wrapper.

Implementing the defined technical requirements

makes “good old web sites exhibit super-powers”

(Mills, Chris. 2016). Thus, the mobile browser itself

takes care of filling the gap to the system. The result

is a standardized solution for building web

applications which may feel like native apps.

Characteristics

It becomes clearer which role PWAs are meant to

play in the mobile landscape when looking at their

characteristics one by one. Originally named by

Russell, a PWA should be all of the following:

Table 1

Responsive Fresh Re-engage able

Installable Safe Discoverable

Linkable Connectivity App-like

 independent interactions

These are the dictated characteristics a web

application needs to have in order to certify as

progressive. Every characteristic is represented by

certain technical properties. A subset of these

properties forms a baseline for web applications to

be detected as a PWA by a browser (Google Inc.

2017) (Russell, Alex. 2016). Google also provides a

way for asserting many of the baseline properties

automatically with a tool called Lighthouse (Google

Inc.Lighthouse.2017). For the following elaboration

the characteristics are organized according to the

definitions on the Mozilla Developer Network as

these arguably make up for a more suitable

separation in this case (Mills, Chris.2016). The

associated classifications by Russel are listed

accordingly.

Network independent (Fresh, Connectivity

independent)

A central component of a PWA is the service

worker. It represents a previously mostly non-

existent instance between a web page and the

corresponding server. The service worker is defined

and registered via JavaScript for a single or multiple

page. After its registration it listens to events

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

10

Paper-ID: CFP/1253/2019 www.ijmdr.net

broadcasted by the web page (Ater, Tal. p. 15-17).

With this new instance in place, the offline state for

web applications is meant to be improved. Instead

of ending up with no functionality at all in a

situation with no network or low transmission rate, a

reasonable offline experience can be delivered. The

service worker is able to offer cached assets and

data independent of network availability. In the best

case the application can allow for browsing

previously visited pages while displaying cached

content. The bare minimum for the characteristic of

being network independent would be displaying a

custom offline page (Russell, Alex. 2016).

Figure 3 UML activity diagram for the workflow of

an offline capable app implemented by service work

ers (Shepherd, Eric, Mills, Chris and Sabiwara. 2016

)

As service workers guaranty a response for requests

made by the application, be it populated with cached

data, they need to intercept HTTP communications

for being able to alter or replace their contents. To

allow for this process to be carried out in a secure

environment, web pages registering a service

worker have to be served via secure HTTP

(HTTPS). Otherwise man in the middle attacks can

take place (Ater, Tal. 27-28).

Safe

So PWAs have to be safe, thus use HTTPS, for

service workers to work. But there are more reasons

justifying a standalone characteristic of safeness.

HTTPS is based on the successor of the

cryptographic specification for the Secure Sockets

Layer (SSL), called Transport Layer Security

(TLS). It prevents tampering of web

communications. Without the protocol in place,

intruders may be able to access sensitive

information or exploit the connection to insert

advertisements, for example. But it is not just useful

to secure sensitive connections with HTTPS. Even

web pages which seem irrelevant from a security

perspective can be violated for gathering usage data

illegitimately (Basques, Kayce. 2017).

Implementing HTTPS even favors how a web page

is ranked in search engines (Bahajji, Zineb Ait and

Illyes, Gary. 2014). Moreover, some web

technologies may work even better on HTTPS

connections (Ater, Tal.p. 28).

Discoverable

Unlike native mobile applications, web applications

do not have central points like app stores or market

places for being discovered. Instead they may be

discoverable via search engines or social media

links. This plays into the aspect of reach. A central

place for app distribution is limited in the number of

apps it can represent efficiently and thus a new

application “can seem like a grain of sand on a

beach” (Hume, Dean Alan. p. 6).

“These apps aren’t packaged and deployed

through stores; they are just websites that took

all the right vitamins.” (Russell, Alex. 2015)

However, PWAs may be market in a way more

dynamic way. Any platform complying with the

standards is able to handle them. A fundamental

artifact for this characteristic is the web app

manifest. This file contains metadata in the

JavaScript object notation (JSON) format with

essential information about the application. Assets

like app icon or splash screens are defined and

identification data like the application name or

author is provided. Moreover, an entry point for the

application is to be specified in the manifest. The

manifest compares very well to something like the

application manifest for native Android

applications. Just like it describes how the Android

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

11

Paper-ID: CFP/1253/2019 www.ijmdr.net

system should handle a packaged application, the

web app manifest describes the PWA in a way any

modern browser may be able to understand (Hume,

Dean Alan. pp. 3,6) (Caceres, Marcos, et al. 2017)

(Knight, Robert, Mattisson, Jonas and Blackburn,

Nathaniel. 2017) (Google Inc.2017).

Installable (App-like-interactions)

The web app manifest is also required for making

the web application installable. In this context

installable refers to being able to add an icon to the

user’s home screen. This way the PWA can be

started in a similar manner to native mobile

applications. For this to work within Google

Chrome on an Android system, a couple of

requirements have to be met. Firstly, the manifest

has to provide basic information about the app. Its

name, a shortened name, an icon image and the

already mentioned entry point in form of a Uniform

Resource Locator (URL) are required. Furthermore,

an appropriate display mode for a screen filling

presentation has to be specified. Secondly, the

application has to be able to start while offline. As

already stated, this is to be ensured via service

workers. Lastly, implicated by the service worker,

the web site has to be served over HTTPS for being

installable. Eventually, if the requirements are met

and a certain degree of engagement is determined,

the browser prompts for adding the PWA to the

home screen (Russell, Alex.2016) (Gaunt, Matt and

Kinlan, Paul.2016). A PWA launched from the

home screen should execute in an application shell

providing a fast startup. The shell may consist of

static user interface elements which are cached

during the installation. This guaranties a network

independent provision of the application

infrastructure which can then be filled with content

(see Figure 4). With this separation of infrastructure

from content the perceived performance and thus

the user experience are enhanced (Hume, Dean

Alan. pp. 18-23.2016) (Osmani, Addy.2017).

Installable basically provides users the ability to add

a home screen icon on their mobile device.

There’s no software or files to download on your

mobile device (or desktop/laptop for that matter).

With a native mobile-app, once you’ve gone thru

the App Store download process, the app’s icon will

show up on your mobile device’s home screen

(See image below).

Figure 4 Illustration of a PWA’s applic

ation shell without content (left) and

filled with content (right)

Linkable

Having a discoverable PWA means it is

approachable in terms of technical handling. It

allows for accessing the app similar to how a native

mobile app would be accessed. In contrast, the fact

that PWAs are linkable refers to approachability

from the web perspective. To use a specific feature

of an ordinary mobile app it is required to be

installed first. And even then, the ways for

accessing the feature might be limited. Web

applications can be accessed almost at any point

without preliminary work by just having the right

URL. The high reachability of the web thrives from

this simplicity. A high amount of traffic originates

from assignable sources resulting in a phenomenon

called “dark social” (Madrigal, Alexis C. 2012).

While its extent might be controversial, it shows

how there may be access channels to an application

which might not be seen in advance. PWAs leverage

this aspect by working without installation and

therefore being easily shareable (Russell,

Alex.2015). Having a web-app be Linkable is

simple and makes it considerably easier for users to

http://www.ijmdr.net/
../../AppData/Roaming/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/Word/Final%20year%20Research%20Report%202019%20increased.doc#page16

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

12

Paper-ID: CFP/1253/2019 www.ijmdr.net

access web-app compared to getting a mobile native

app on an App Store for Customers to access the

app, they simply click on the link. This makes it

very convenient for you to share a web-app by

adding the web-app’s link in an email, a tweet, add

to blog, etc. Then simply click the link, a browser

opens and there’s your web-app.

Re-engage able (App-like-interactions)

As pointed out, the engagement for web

applications is rather low. PWAs are meant to

overcome this. With an icon sitting on the home

screen and push notifications they are supposed to

re-engage the user just like native apps can.

Google’s model example for this characteristic is

the e-commerce site Flipkart. When their web

presence was launched as a PWA, the time that

users spent on the site tripled. More than half of

their users now visited the site via the home screen

icon. Among them the conversion rate would be

70% higher compared to the average user (Google

Inc.2017). Flipkart substantiates these numbers with

the use of the new technologies. Based on the Push

API they were able to send messages to their

clients’ service workers, which in turn would then

notify the user via the Notifications API. As the

service workers “live beyond the lifetime of the

browser” (Nagaram, Amar.2017), such ways of

interacting with the user would now be possible for

web applications (Nagaram, Amar.2017).

Responsive

“PWAs are quickly becoming a set of best practices.

The steps you take to build a Progressive Web app

will benefit anyone who visits your website,

regardless of what device they choose to use.”

(Hume, Dean Alan. p. 4)

One of the best practices brought together by PWAs

is the one of responsive design. Mobile-first

approaches changed the way websites are designed

substantially, and one might say rightfully so.

Today, two thirds of the time spent on digital media

takes place on mobile systems (comScore Inc. p. 6).

This grants valid reason for making an effort to

deliver highly mobile friendly websites. With a

heterogeneous landscape regarding device

specifications, the goal has to be a proper display

regardless of form factor. This is commonly

achieved by using media queries and advanced

features of CSS like device adaption and the flexible

box layout (Ross, David, Shepherd, Eric and Mills,

Chris.2016).

Progressive

Just like a PWA should display properly on any

device regardless of its form factor or design, it

should also work properly regardless of the browser

in use. Not everyone is able to keep pace with the

mentioned emergence of advanced interfaces. For

example, service workers are not yet overall

supported by common browser vendors (Archibald,

Jake.2017). The established web development

principle of progressive enhancement is used to deal

with this circumstance. Similar to mobile-first, it

relates to building a web application by starting with

a small but working foundation and then layering

more functionality on top. The usage of advanced

technologies (e.g. low-level APIs such as the ones

for push notifications) would be acceptable as long

as some kind of fallback is provided. Thereby, the

website is made “more accessible to all audiences”.

Figure 5 Illustration of layered view o

n progressive enhancement

Source: (4 p. 27)

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

13

Paper-ID: CFP/1253/2019 www.ijmdr.net

The principle is often described as being layered.

The base layer would be made up by the site’s

content with subsequent layers for design and

interaction. This way, even clients that are not

supporting JavaScript or CSS may get access to a

site’s content. The metaphor can also be applied

within these layers where different levels of support

may be present (see Figure 5). For example, some

browsers may be proficient in JavaScript but may

not implement the most recent standards

 (Ater, Tal. p. 27). With progressive enhancement

these clients will still be able to deliver less yet

reasonable functionality. Regardless of a client’s

current connectivity, the website may not be

completely broken.

Hereinafter, all characteristics of PWAs are listed

collectively with a certain described intent and the

technical properties used to instantiate them. The

characteristics Linkable and Progressive lack

specific technical properties as their implementation

are essential to web development itself. With them,

it is rather about the definition of their concept than

the emergence of a new technology.

Web Performance

Web performance can be divided into two parts.

The performance on the server-side is commonly

referred to as the backend performance and the

client-side performance is referred to as the front-

end performance. The client in this case means

the web browser that is used to access a webpage.

The client-side performance can be further

divided into the performance of a webpage on

mobile devices and on desktop computers. This

thesis focuses on the client-side performance and

optimizing it on mobile devices and mobile

network connection speeds in order to achieve

fast user experiences in varying conditions. On a

fully responsive website, the content will

automatically adapt to the device screen size and

no separate mobile web page is usually needed.

The technologies and the content are similar when

accessed using different devices, such as mobile

phones or desktop computers. However, the

performance of a webpage on different devices

may vary. These differences in the performance

are caused by other factors according to the study;

mobile web reach is way higher than native app

reach. It was 11.4 million unique visitors per

month compared to 4 million visitors. Whereas

the states of user engagement with services,

showed that users tend to spend more time on

native mobile apps compared to the standard web

app. It was an average of 188.6 minutes on app

against 9.3 minutes on the web. So, the idea was

clear. They wanted to provide a native app like

engaging experience to users on the mobile web.

In this way, Progressive Web Apps were

developed to deliver amazing user experience on

the web. Below is the comparison between Native

App, PWA and Standard web app on various

important parameters:

Table 2

Source: (4 p. 27)

Context Diagram

http://www.ijmdr.net/
../../AppData/Roaming/AppData/Roaming/Microsoft/AppData/Roaming/Microsoft/Word/Final%20year%20Research%20Report%202019%20increased.doc#page18

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

14

Paper-ID: CFP/1253/2019 www.ijmdr.net

The Context Diagram shows the system under

consideration as a single high-level process and then

shows the relationship that the system has with

other external entities (systems, organizational

groups, external data stores, etc.). The following

are the context diagrams for PWA and Native apps

(Progress Software Corporation. 2016). Figure 6:

UML component diagram illustrating differences

and similarities between progressive web and Nati

ve Script application architecture layers

Figure 7:

UML activity diagram for the workflow of an offl

ine capable app

3.2.3 System Software Level Architectural

Design

Figure 7. Source: (4 pp. 27-28)

Figure 7 UML activity diagram System Softwa

re Level Architectural Design

It is based on diagrammatic representations of

 software components. As the old proverb say

s “a picture is worth a thousand words” By u

sing visual representations, we are able to bet

ter understand possible flaws or errors in soft

ware or business processes.

UML was created as a result of the chaos re

volving around software development and doc

umentation. In the 1990s, there were several

different ways to represent and document soft

ware systems. The need arose for a more

unified way to visually represent those systems an

d as a result, in 1994-

1996, the UML was developed by three software

engineers working at Rational Software. It was lat

er adopted as the standard in 1997 and has remain

ed the standard ever since, receiving only a few u

pdates. Mainly, UML has been used as a general-

purpose modeling language in the field of softwar

e engineering. However, it has now found its way

into the documentation of several business proces

ses or workflows. For example, activity diagrams,

 a type of UML diagram, can be used as a replace

ment for flowcharts. They provide both a more sta

ndardized way of modeling workflows as well as

a wider range of features to improve readability a

nd efficacy. UML itself finds different uses in soft

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

15

Paper-ID: CFP/1253/2019 www.ijmdr.net

ware development and business process document

ation: UML diagrams, in this case, are used to co

mmunicate different aspects and characteristics of

 a system. However, this is only a top-

level view of the system and will most probably n

ot include all the necessary details to execute the

project until the very end. Forward Design –

 The design of the sketch is done before coding t

he application. This is done to get a better view of

 the system or workflow that you are trying to cre

ate. Many design issues or flaws can be revealed,

thus improving the overall project health and well

-being. Backward Design –

 After writing the code, the UML diagrams are dr

awn as a form of documentation for the different

activities, roles, actors, and workflows.

Modular Design for the System Function

Modular design is basically a method that divides a

system or project into smaller segments, which can

then be brought together to function as one. The

main thing to note about modular design is that it

refers to small parts that are create independently

yet can still be used in different systems to power

manifold functionalities. The diagram below shows

the modular design for this project.

Figure: 8

RESULTS

This chapter describes the implementation of the

Farmer’s support progressive web application

system, the prototype developed in this study

demonstrate the features and benefits of PWA. The

application thus developed has all the components

of PWA such as Service Worker, Web App

Manifest, App shell and Web push notification.

Farmer’s support progressive web application, the

user can browse the weather report and get the

report for the next four days and get notified for the

latest news via push notification, install app on the

home screen with just one tap and use offline with

UI and UX like a native app.

4.2 Baseline Study Results

Building progressive web apps and meeting all

the requirements based on Performance,

Accessibility, Best Practices and SEO was not

easy to be archived. All that makes it happen, all

the components of PWA, i.e. Service Worker,

Web App Manifest, Application Shell model, and

Web Push notification need to be implemented

with great care and work hand in hand. All these

components are described in the following

section.

Web App Manifest

Web App Manifest is a simple JSON file

containing information: name, short name,

description, icons for different device resolution,

starts URL, display mode, theme color of the

application. The use of Web App Manifest installs

the web app in the user home screen between the

native apps. As a result, the user can get quick

access and enjoy full-screen display like with the

native app. (Google Inc.2016) Listing 1 shows the

manifest json file for a web application.

For the web app to be able to appear as install

banner on sites and provide an app-like

experience, the web app must fulfill the following

criteria:

1. The site needs to be served over HTTPS.

2. The site needs to have a service worker

registered.

3. The web app manifest file of the site should

have at least the four mandatory fields name

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

16

Paper-ID: CFP/1253/2019 www.ijmdr.net

or short name (preferably both, start URL,

icons and display). (Google Chrome

Developers.2017)

As illustrated in Figure 15, a web app install

banner is triggered by the browser when manifest

file meets above mentioned criteria so the user

can install app on home screen and enjoy full

screen experience like a native app. The web app

installs banner user prompt that Chrome will

trigger to indicate that the user can add your web

app to the users’ home screen. It will only prompt

when a number of criteria have been met:

1. The app uses a service worker

2. The site is using HTTPS

3. The app has a manifest declared

4. The manifest has a short name, 144-pixel

icon and a type of 'image/png'

A web app manifest file can be verified manually

by using the Manifest tab on the Application

panel of Chrome DevTools, as shown in figure 9.

Web App Manifest in Chrome Developer Tools A

pplication panel

Web app manifest has compatibility issue with

browsers. Not all browser support manifest file.

The compatibility of web app manifest with

different browser can be checked by using online

validation tool as shown in figure 29.

As illustrated in figure 4, Web App Manifest

works best for the Chrome, Chrome for An-droid,

UC Browser for Android, Safari, iOS Safari have

recently started supporting the manifest file

whereas, Firefox and MS Edge have no support

till date.

Service Workers

The web as it is today is rich, beautiful and useful but when users visit a web app; when they have poor

connection or have lost their connectivity, they are shown the page ‘there is no internet connection’ as

shown in figure 9.

Figure 9 A web app in offli

ne state in mobile and desk

top view. Source: Author, 20

19.

As illustrated in figure 18, offline state of web

app could not provide any useful information to

users. But the introduction of a service worker has

turned this error as something that can be handled

with grace.

A Service Worker is an event-driven script that

runs in the background separately from the

webpage, reacts to events and intercepts network

requests of application or website with server and

resources. It works as proxy

between the network and the

browser. It can run even when

the application is closed, thus

it serves to trigger events even

when the site is closed.

Features like push notifications and background

sync are possible in web today because of Service

Workers. In the future, the service worker shall

back other cool features like periodic sync.

(Archibald, Jake.2017) Since the service worker

can intercept the request, modify content or even

completely replace with new responses, only

pages served over secure connections (HTTPS)

can register a service worker. This is to protect

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

2

Paper-ID: CFP/1253/2019 www.ijmdr.net

users and prevent man-in-the-middle attacks.

((Archibald, Jake.2017). Figure 6 shows the

caching strategy of service worker.

Figure 10

Compatibility of

browsers for service

workers (comScore

Inc.2016)

As shown in figure

10, most of the

browsers such as

Chrome, Firefox,

Opera, Chrome for

Android Safari, iOS

Safari, Edge

support Service

Worker. Opera

Mini, and Internet

Explorer do not

support service

worker till date.

Service Worker Life Cycle

As service worker is an event-driven script, it has

a short life span. It wakes up with events and runs

only if it needs to process the event. Through

Service Worker the developer can treat the

network as enhancement, control caching of

resources on a proper way. Control over the

cached resources plays an important role in

developing offline application, which is one of the

key features of PWA. Via service worker the

webpage is available even offline and with cached

data loads faster even on a flaky network.

(Russell, Alex.2016). The lifecycle of the service

worker is its most complicated part. If you don't

know what it's trying to do and what the benefits

are, it can feel like it's fighting you. But once you

know how it works, you can deliver seamless,

unobtrusive updates to users, mixing the best of

web and native patterns. This is a deep dive, but

the bullets at the start of each section cover most

of what you need to know.

The intent of the lifecycle is to:

Make offline-first possible.

Allow a new service worker to get it ready

without disrupting the current one. Ensure an in-

scope page is controlled by the same service

worker (or no service worker) throughout.

Ensure there's only one version of your site

running at once.

That last one is pretty important. Without service

workers, users can load one tab to your site, and

then later open another. This can result in two

versions of your site running at the same time.

Sometimes this is ok, but if you're dealing with

storage you can easily end up with two tabs

having very different opinions on how their

shared storage should be managed. This can result

in errors, or worse, data loss.

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

2

Paper-ID: CFP/1253/2019 www.ijmdr.net

The install event is the first event a service

worker gets, and it only happens once.

A promise passed to install Event. Wait Until

signals the duration and success or failure of your

install.

A service worker won't receive events like fetch

and push until it successfully finishes installing

and becomes "active".

By default, a page's fetches won't go through a

service worker unless the page request itself went

through a service worker. So, you'll need to

refresh the page to see the effects of the service

worker.

A service worker has a totally separated lifecycle

from a web page. Figure 11 illustrates a

simplified version of a service worker lifecycle on

its first installation.

Figure 11 illustrates a simplified version of a

service worker lifecycle on its first installation.

Survey Results and Discussion

The web app manifest is a simple JSON file that

tells the browser about a web application and how it

should behave when 'installed' on the user's mobile

device or desktop. Having a manifest is required by

Chrome and other supporting browsers to show the

Add to Home Screen prompt.

A typical manifest file includes information about

the app name, icons it should use, the start url it

should start at when launched, and more.

The web app manifest was also required for making

the web application installable. In this context

installable refers to being able to add an icon to the

user’s home screen. It was completed and worked

ok. Below was the status of the Manifest. The App

manifest was successfully created check and the

following images show the results. To manually

verify my manifest was setup correctly, I used the

Manifest tab on the Application panel of Chrome

DevTools. This tab provides a human-readable

version of many of the manifest's properties. I could

also simulate Add to Home Screen events from

there. When I wanted an automated approach

towards validating my web app manifest, I checked

out Lighthouse. Lighthouse is a web app auditing

tool. It's built into the Audits tab of Chrome

DevTools, or can be run as an NPM module. I also

provided Lighthouse with a URL, it was able to run

a suite of audits against my page, and then displayed

the results in a report.

Figure 11 UML App Manifest

Source: By Matt Gaunt (2019)

http://www.ijmdr.net/
https://developers.google.com/web/resources/contributors/mattgaunt

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

3

Paper-ID: CFP/1253/2019 www.ijmdr.net

Figure 12 UML App Manifest

prompting to install an app on

the desktop computer.

Source: Author

The service worker was created

and it was able to run smoothly

below is the status of the service

worker with an active status. On

the left part of an image is cache

storage.

Push Notification

The push notification was created and test and it worked well as shown in the Figure 13 below. A

notification is a message that pops up on the user's device. Notifications can be triggered locally by an open

application, or they can be "pushed" from the server to the user even when the app is not running.

In my case the notification

comes from the server, they

allow users to opt-in to

timely updates and allow

you to effectively re-engage

users with customized

content. Push Notifications

are assembled using two

APIs: the Notifications

API and the Push API. The

Notifications API lets the

app display system

notifications to the user. The

Push API allows a service worker to handle Push Messages from a server, even while the app is not active.

The Notification and Push API's are built on top of the Service Worker API, which responds to push

message events in the background and relays them to the application.

http://www.ijmdr.net/
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

4

Paper-ID: CFP/1253/2019 www.ijmdr.net

The following Figure 14 shows how the push message moves

Figure 15 UM

L Push Notific

ation Architect

ure

Figure 14 Ser

vice worker

Source:

Author, 2019

The service

worker was

created and it

was able to run

effectively as

shown in figure

14. Files are not

the only content

that can be

cached.

localStorage is great to persist key value pairs where the values are strings. IndexedDB is more robust and

can store many more types of data efficiently. I think of it as a light weight document database in the

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

5

Paper-ID: CFP/1253/2019 www.ijmdr.net

browser. appCache and service worker cache persist files, URL addressable resources to be technically

correct. But service worker cache is not the only browser storage medium you need to monitor.

IndexedDB is a low-level API for client-side storage of significant amounts of structured data, including

files/blobs. This API uses indexes to enable high-performance searches of this data. While Web Storage is

useful for storing smaller amounts of data, it is less useful for storing larger amounts of structured data.

IndexedDB provides a solution IndexedDB is a transactional database system, like an SQL-based RDBMS.

However, unlike SQL-based RDBMSes, which use fixed-column tables, IndexedDB is a JavaScript-based

object-oriented database. IndexedDB lets you store and retrieve objects that are indexed with a key; any

objects supported by the structured clone algorithm can be stored. You need to specify the database schema,

open a connection to your database, and then retrieve and update data within a series of transaction. In this

project an IndexedDB was use because of the nature of the project. Data from the weather API was cached

for future use.

Figure 16 Service worker

Source: Author, 2019

After creating a service worker and an App Manifest to a web page it was impotant to test the performance

of the web by runing Lighthouse. This is an open source, automated tool for improving the quality of web

pages. Lighthouse is an open-source, automated tool for improving the performance, quality, and

correctness of your web apps.

http://www.ijmdr.net/
https://github.com/GoogleChrome/lighthouse

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

6

Paper-ID: CFP/1253/2019 www.ijmdr.net

When auditing a page, Lighthouse runs a barrage of tests against the page, and then generates a report on

how well the page did. From here you can use the failing tests as indicators on what you can do to improve

your app. You can run it against any web page, public or requiring authentication. It has audits for

performance, accessibility, progressive web apps, and more. You can run Lighthouse in Chrome DevTools,

from the command line, or as a Node module. You give Lighthouse a URL to audit, it runs a series of audits

against the page, and then it generates a report on how well the page did. From there, use the failing audits

as indicated on how to improve the page each audit has a reference.

Figure 17 Light

house for testi

ng the web

Source: Author,

2019

Figure 18 First Audit results: Source: Author, 2019

The following

results were

obtained after run

at test for the first

time

The results

indicate very low

performance that

was befoere

optimising images

and javascripts.

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

7

Paper-ID: CFP/1253/2019 www.ijmdr.net

Figure 19 shows second Audit results: Source: Author, 2019

The performance increased from 8 to 29 after optimizing images, the warning sign shows areas that need

improvements.

4.3 System Implementation Results

The application was developed on HP Probook as the

hardware and Windows 10 as an operating system.

Wampp server was downloaded and installed and it

was used as a local hosting server. The open weather

API was also incorporated in order for the system to

access the weather data. Visual Studio Code editor

was also installed. Visual studio code is a free,

lightweight and robust source code editor, which

leverage the development of application through its

features like embedded CLI and built-in git support.

It is available for all the platforms: macOS. Windows

and Linux. It has intelligent code completion,

streamlined debugging and In-Product Source

Control. It also comes with built-in support for

Typescript, JavaScript and Node.js and extension for

C#, C++, Java, Python, PHP and Go. Moreover, it

also has runtime such as Unity and .NET.

HTTPS

In order for PWA to work properly it has to run on a

secure protocol, certificate has to be installed SSL

here a cloud hosting server was used to test the

prototype application.

CONCLUSION

The Farmer’s support system progressive web

application will be used to help farmers with

information regarding weather pattern and monitor

the crops remotely. The system is able to display

weather report for the next four day or more, that

will help farmers to plan for the season. The

application is capable of running even without

internet connection or with a slow network without

displaying a connection error page even when the

network is disconnected and refreshed contents will

be intact because it uses the first offline approach.

The system is also able to show the weather focus in

any city of any country.

Development of the System as a solution

Technology has become a key component of

business in every sector and every business is trying

to engage its customers by using website and mobile

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

8

Paper-ID: CFP/1253/2019 www.ijmdr.net

phones. This System will provide a solution to the

challenges businesses have been having if the

business adopts a progressive web application then

it finds a solution for a mobile application, no need

for developing other mobile applications.

Progressive web application also comes as a cost

saving method of developing cross platform

applications. (Russell, Alex. 2015)

Comparison with other similar works

Jan von der Assen (2018) in his paper titled “A

Progressive Web App (PWA)-based Mobile Wallet

for Bazo” created a fund transfer Progressive web

application which was able to work offline. Users

could enter their transaction while offline and when

they go online the transaction could be processed.

Parbat Thakur (2018) developed a PWA news app

which had a reachability of the web and capabilities

like a native application. PWA News App could

work offline, install on home screen, launch in full

screen mode without any challenge also reengaged

users by sending relevant push notification and load

fast even on flaky networks. “The prototype

application was eventually functioning regardless of

network state to the greatest possible extent.

Anna Zacharuk (2018) carried a research on both

PWA and Native app and she states that the

competition between PWA and native

applications is slightly uneven because these are

two different technologies even if we try to

explain in simple terms that PWA is a technology

that adjusts to all devices and works with all

operating systems, while native apps – in order to

give the same effect – must be created twice:

separately for each system (iOS and Android), it

becomes clear the absolute winner is PWA. But

we all know the devil is in the detail of PWAs are

progressive internet apps, or websites with

additional functions, which make them look and

work the same on various systems and various

screens – systems treat them as native system

applications. The user is unable to tell the

difference (it is technically a web application).

The website A native app, on the other hand, is

created for a specific platform, that is for iOS (in

Swift or Objective-C) or Android (Java). What’s

important and different from PWA, is that a

native app can fully communicate with the device

on which it’s going to be opened. PWA and

native apps are comparable, because PWA was

designed as a “native like experience”, which

means it should work like a native application. So,

we can investigate their usability, speed, opening

time, offline mode and several other functions.

Before we get to a detailed comparison, it is

worth explaining the controversies around PWA

and Apple. This turbulent story is slowly getting

closer to a happy ending. As PWA started to draw

companies’ attention and was celebrating its first

successes, Apple saw it as problematic for the

simple reason that with the fast development of

PWA, App Store wouldn’t have any reason to

exist. Initially, PWA worked on iOS in such a

way that many solutions on the websites were

available, but the maximum capabilities of PWA

were not available (e.g. no implementation of

Service Worker API in Safari browser or no Web

App Manifest files). PWA has had some fat years

and is still on top. Under such circumstances,

Apple had to be reasonable. First, they pulled in

their horns by making more functions available,

and currently we can see a growth in aggressive

removal from iOS App Store apps which were

built with the use of commercialized iOS

application templates. Apple is also cleaning App

Store from applications thought to be copies,

clones, false, abandoned or incompatible with 64

bits. Experts believe this step means that Apple

has begun to promote PWA technology creation

and is following its expanding concept. There are

also experts who claim that Apple has never been

against PWA.

Conclusion and Possible application

The research focused on building a progressive web

application and assessing whether it is time to

abandon native application and move on with

http://www.ijmdr.net/
https://www.contentic.io/en/progressive-web-apps-pwa-2

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

9

Paper-ID: CFP/1253/2019 www.ijmdr.net

progressive web app. PWAs are meant to close the

existing gap between the web and native mobile

applications. Due to the emergence of sophisticated

yet standardized technologies they are able to

implement characteristics which eventually allow

them to deliver a significantly enhanced user

experience. Consequently, PWAs may offer exciting

opportunities by elevating the web to native spheres.

Several of the leveraged technologies may be still

evolving and it might take some time until they are

widely supported, however, with concepts like

progressive enhancement this does not constitute a

problem. Rather it fits in perfectly with the overall

idea. The established characteristics may be

implemented incrementally and subsequently

improve the experience for everyone in the

application’s audience. Meanwhile, NativeScript

demonstrates how technologies, previously only

used on the web, can be used today to develop

highly native applications on a conveniently

abstracted development layer. The starting point of

PWAs poses interesting environment for looking at

NativeScript applications. Though not all

characteristics are directly applicable, they still offer

a solid foundation for knowing what may be

expected from a mobile application. All of these

requirements could be practicably implemented or

otherwise certified through the presence of certain

properties, concepts or features of NativeScript to a

far extent. Of course, certain issues occurred during

the development and shortcomings were identified,

yet NativeScript may be able to provide some

characteristics earlier than it would be possible on

the web. At the same time, however, development

can be conducted very much like for the web.

Indeed, with the right architecture to ensure proper

encapsulation it may even be possible to seamlessly

share large parts between a PWA and a NativeScript

application.

The differences between both solutions in relation to

individual features are rather minor. They both seem

to allow for the creation of more than decent user

experiences while mitigating the need for

cumbersome native developments. However,

NativeScript might not be able to offer the same

progressive nature as PWAs. The successive

elevation of web applications presents innovative

ways to think about user funnel optimization.

NativeScript applications just cannot compete here

as they are inevitably working in the same realms as

plain native ones. On the other hand, the framework

may allow the use of advanced features on systems

which are not yet compatible with the most recent

web standards.

Therefore, as often is the case, the individual

priorities have to be evaluated when deciding

between the approaches as they both seem to offer

interesting opportunities but might not fit

everyone’s needs. It may well be that PWAs

eventually gain great general attention in the future,

yet, one may implement a NativeScript application

today and transform it into a PWA at a later point.

This may be accomplished with arguably little effort

due to the technical and architectural overlaps.

Looking forward, web technologies, especially

JavaScript, seem to grow increasingly powerful and

extend to more and more areas of application. As

shown, their usage is not restricted to simply

making web content slightly more dynamic but

rather be the basis for full-featured applications

delivering immersive user experiences to various

platforms. Furthermore, during the creation of this

report, the third major version of NativeScript was

released. With improvements in performance, the

elimination of several issues and new features it

poses even better abilities to implement the criteria

laid down in this report. Hence, the prospects for the

future development of web and mobile development

are exciting as they seem to converge in certain

aspects and conflict in others, consequently sparking

progress and remarkable innovations.

In the course of this report, PWAs and the

characteristics of their development could be

described in detail after the conditions for the later

conducted analysis were defined. Moreover, the

thematic backgrounds regarding mobile cross-

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

10

Paper-ID: CFP/1253/2019 www.ijmdr.net

platform development with NativeScript were

provided in order to subsequently prepare the

analysis by laying down verifiable criteria. The

afterwards derived criterion was comprehensively

applied through prototypic implementations and

sound research to assess NativeScript and

applications developed with the framework. The

findings of these examinations were then

summarized and weighed accordingly in a

discussion. Lastly, the relevant solutions were

comparatively debated against the established

background resulting in concluding considerations

and an appropriate outlook.

Future Works

Based on the results, it is recommended to continue

improving the performance of the PWA Farmer

support system by focusing on the performance and

by doing small improvements where ever possible.

It is also important to measure the impact of these

improvements in order to know whether the actions

are actually improving the performance. As the

results from the lighthouse performance evaluation

suggests, focusing on the bottlenecks in the page

loading and rendering may enable improving the

page loading speed and winning some valuable

time. Furthermore, it is recommended to set up

continuous performance monitoring in order to

notice if new performance bottlenecks are caused by

new features before they go to production. This

continuous focusing on performance would allow

rewarding developers or teams who are improving

the performance. Page loading performance budgets

could be defined and alarms when exceeding the

budgets could be utilized for notifying about

downgraded performance. However, the loading

performance of the websites varies based on the

content and advertisement campaigns on the site.

Therefore, a short-term performance monitoring

solution will not provide reliable results in a

changing environment like this. A solution to this

problem may be creating a static test environment

that is as close to the production version as possible.

The test environment should contain as little

changing elements as possible in order to compare

the page loading results over time. The

advertisements and other changing content should

be disabled on this environment to achieve this goal.

The static test site may be enough for evaluating the

performance impact of the changes that are going to

be released before releasing them. Additionally, a

longer-term monitoring solution on the actual site

may provide useful information about the trends in

the performance of the site. In addition to the above-

mentioned actions, there are a few actions that are

not recommended at the time being. Re-

implementing the PWA Farmer’s support system

front end as a JavaScript single-page application

may have a positive impact on the performance.

However, if not done properly, it could even slow

down the page load times due to large scale

JavaScript applications having to download large

bundles of application code before rendering the

content. This is possible to avoid by utilizing server-

side-rendering in combination with client-side

application logic. On the other hand, if done

correctly it could reduce the page load times and

especially the navigation between articles. The

enormous effort required for the rewrite may be

hard to justify, especially from the performance

point of view. Another option would be

implementing AMP support for the PWA farmers’

support system. This would allow Google to serve

the content rapidly from the AMP cache and

improve the visibility in the mobile search results.

There is nothing wrong with AMP as an idea for

improving web performance on mobile devices.

However, it is heavily controlled by Google and

restricts the possibilities of the developers in

addition to moving traffic to Google’s servers where

the AMP cache is stored. It would also be difficult

to make sure that the content stays always up-to-

date if the content is served from the AMP cache.

Implementing AMP support in the SNDP is

therefore not recommended. During the writing of

the report, even wider support for service workers

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

11

Paper-ID: CFP/1253/2019 www.ijmdr.net

was introduced. Now, all the major browsers

support service workers, including Microsoft Edge

and Safari both on MacOS and on iOS as seen in

Figure 6. This may change the situation when

considering whether building a PWA is worth it.

Wider browser support means reaching larger

audience with the possible performance

improvements. However, in the current situation it

is not recommended to continue to develop the

prototype PWA further unless features such as push

notifications are needed. From the performance

point of view a PWA is not the best option for

improving the performance of the Farmers support

system at the moment. By refactoring the front-end

structure in other ways, either into a JavaScript SPA

or static HTML page with dynamic content loading

strategy, a faster loading experience may be

achieved. After improving the performance in other

ways, the PWA option should be reconsidered. By

that time, the PWA implementation differences

between the different platforms have probably been

worked on and decreased making a PWA a more

suitable solution for multi-platform web application

development. Progressive web apps have benefits

for everyone involved. The user will be able to

instantly install the “app” without a visit to the app

store and a large download, which can be an

unpleasant experience on a slow connection.

Organizations can go back to developing web apps

without requiring the requisite separate Android and

iOS teams. They can update and “release” their app

without going through the app store approval

process. Releases and defect fixes can be deployed

immediately. Web design elements are immediately

picked up by the progressive web app. A

progressive web app is a website that combines the

best experiences of the web and an app. They don't

require any installation. The app loads quickly, even

when the user is on bad networks. It can send

relevant push notifications to the user and has an

icon on the home screen and loads as top level, full

screen experience. Application shell architectures

come with several benefits but only make sense for

some classes of applications. The model is still

young and it will be worth evaluating the effort and

overall performance benefits of this architecture.

Progressive web apps are an interesting forward

look into the future of mobile apps. It will become a

key factor in the world of apps.

The enhancement of a traditional webpage with

Progressive Web Application features will make it

fast, reliable and engaging. The webpage is added

with the tools like Service Workers which make it

work offline. The App Shell architecture helps in

caching the contents separately thus making the

process of retrieving faster. The Service Worker

also helps in setting up the push notification and

makes the webpage to be made as an icon on

desktop thus provide app like experience

Acknowledgement

First and foremost, I would like to thank God

almighty for the good health he has always provided

for me even during the period I was working on the

research. My wife Sylvia C. Mchinzi for the

encouragement, Mr. Lameck Nsama and Mrs.

Sylvia Nanyangwe and Mr. Kaela Kamweneshe

(IJMDR-Editor), my project supervisors for the

appropriate guide provided during my research. I

would like also to appreciate Open weather for

allowing me to use their weather API, also Bing

cooperation for allowing me to use their map API

.

http://www.ijmdr.net/

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

12

Paper-ID: CFP/1253/2019 www.ijmdr.net

REFERENCES

[1] Ali Express Showcase," in

developers.google.com. [Online]. Available:

[2] Anderson, David J. Kanban: Evolutionäres

Change Management für IT-Organisationen.

[trans.] Arne Roock and Henning Wolf. 1.

Heidelberg: dpunkt. Verlag, 2011. ISBN

978-3-86491-027-2.

[3] Anderson, Nathanael J. Getting Started with

NativeScript. Birmingham: Packet

Publishing Ltd., 2016. ISBN 978-1-78588-

865-6.

[4] April 4, 2017. [Cited: May 2, 2017.]

https://github.com/VideoSpike/nativescript-

web-image-cache.

[5] Bundling Script Code with Webpack.

NativeScript. [Online] April 11, 2017.

[Cited: May 3, 2017.]

http://docs.nativescript.org/angular/tooling/b

undling-with-webpack.html.

[6] Creating Launch Screen and App Icons for

Android. NativeScript. [Online] September

22, 2016. [Cited: May 5, 2017.]

https://docs.nativescript.org/publishing/creati

ng-launch-screens-android.

[7] Enabling Deep Links for App Content.

Android Developers. [Online] [Cited: April

5, 2017.]

https://developer.android.com/training/app-

indexing/deep-linking.html.

[8] Firebase Cloud Messaging. Firebase.

[Online] April 3, 2017. [Cited: April 6,

2017.]

https://firebase.google.com/docs/cloud-

messaging/.

[9] Launch screens. Material design guidelines.

[Online] [Cited: April 4, 2017.]

https://material.io/guidelines/patterns/launch-

screens.html.

[10] Layouts. NativeScript. [Online] March 17,

2017. [Cited: May 4, 2017.]

https://docs.nativescript.org/angular/ui/layout

s.html.

[11] Making Your App Content Searchable by

Google. Android Developers. [Online]

[Cited: April 5, 2017.]

https://developer.android.com/training/app-

indexing/index.html.

[12] Mehlhorn, Nils. Modern Cross-Platform

Development for Mobile Applications.

Faculty of Media, Hochschule Düsseldorf

University of Applied Sciences. Düsseldorf,

2016/2017. Scientific Consolidation.

Publication revision.

[13] Multithreading Model. NativeScript.

[Online] November 7, 2016. [Cited: April 4,

2017.] https://docs.nativescript.org/core-

concepts/multithreading-model.

[14] NativeScript 3.0 Available Today.

NativeScript. [Online] May 3, 2017. [Cited:

May 8, 2017.]

http://www.ijmdr.net/
https://github.com/VideoSpike/nativescript-web-image-cache
https://github.com/VideoSpike/nativescript-web-image-cache
http://docs.nativescript.org/angular/tooling/bundling-with-webpack.html
http://docs.nativescript.org/angular/tooling/bundling-with-webpack.html
https://docs.nativescript.org/publishing/creating-launch-screens-android
https://docs.nativescript.org/publishing/creating-launch-screens-android
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://material.io/guidelines/patterns/launch-screens.html
https://material.io/guidelines/patterns/launch-screens.html
https://docs.nativescript.org/angular/ui/layouts.html
https://docs.nativescript.org/angular/ui/layouts.html

The International Journal of Multi-Disciplinary Research
ISSN: 3471-7102, ISBN: 978-9982-70-318-5

13

Paper-ID: CFP/1253/2019 www.ijmdr.net

https://www.nativescript.org/blog/nativescrip

t-3.0-available-today.

[15] NativeScript/android-runtime: Android

runtime for NativeScript (based on V8).

GitHub. [Online] April 24, 2017. [Cited:

May 4, 2017.]

https://github.com/NativeScript/android-

runtime.

[16] Notifications. Android Developers. [Online]

[Cited: April 6, 2017.]

https://developer.android.com/guide/topics/ui

/notifiers/notifications.html.

[17] Publishing for Android. NativeScript.

[Online] December 9, 2016. [Cited: May 2,

2017.]

https://docs.nativescript.org/publishing/publi

shing-android-apps.

[18] Styling. NativeScript. [Online] May 2, 2017.

[Cited: May 4, 2017.]

https://docs.nativescript.org/angular/ui/stylin

g.html.

[19] What is Android Runtime for NativeScript?

NativeScript. [Online] [Cited: November 25,

2016.]

http://docs.nativescript.org/runtimes/android/

overview.

http://www.ijmdr.net/
https://www.nativescript.org/blog/nativescript-3.0-available-today
https://www.nativescript.org/blog/nativescript-3.0-available-today
https://github.com/NativeScript/android-runtime
https://github.com/NativeScript/android-runtime

