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Abstract— Global Climate Models (GCMs) are tools 

used for representing future climate conditions, but their 

coarse spatial resolution cannot be used at local-scale in 

impact studies. Downscaling techniques are used to 

adapt the coarse GCM output to the local features of a 

given region. Therefore, the study objective was to 

evaluate the adaptability of the Statistical DownScaling 

Model (SDSM) in downscaling temperature and 

precipitation using HadCM3 GCM for A2 and B2 SRES 

scenarios at Mount Makulu (latitude: 15.550
o
 S, 

longitude: 28.250
o
 E, Altitude: 1200 m above sea level). 

Result showed that SDSM simulated minimum (Tmin) 

and maximum (Tmax) temperature with reasonable 

accuracy. However, the results showed that SDSM was 

not very robust in simulating precipitation. Projected 

annual Tmin and Tmax change for Mount Makulu would 

be 0.203
o
C, 0.563

o
C, and 1.032

o
C and 0.177

o
C, 0.462

o
C, 

and 0.910
o
C in 2020, 2050 and 2080 under A2 SRES 

scenario, respectively. Under B2 scenario, Tmin and 

Tmax would increase by 0.192
o
C, 0.409

o
C, and 0.708

o
C 

and 0.132
o
C, 0.389

o
C, and 0.910

o
C in 2020, 2050 and 

2080, respectively. Precipitation would increase under 

A2 and B2 scenarios by 3.741% (2020s), 15.604% 

(2050s), and 28.257% (2080s) and 5.837% (2020s), 

10.205% (2050s) and 19.312% (2080s), respectively. 

Furthermore, the number of days with precipitation and 

the amounts (mm/year) would increase during 2020s, 

2050s and 2080s. A2 scenario predicted the greatest 

changes in Tmax, Tmin and precipitation by the end of 

the century. Changes in Tmax, and Tmin and 

precipitation would affect crop growth rates, 

photosynthesis, evapotranspiration, as well as soil water 

and nutrient availability. 

Keywords— climate scenarios, GCM, HadCM3, 

SDSM, Statistical downscaling 

 INTRODUCTION 

Global climate models (GCMs) provide 

information at a coarse resolution and cannot be 

used directly in modeling impact studies [1]. 

Downscaling techniques are therefore; used to 

obtain high-resolution climate or climate change 

information from relatively coarse-resolution 

GCMs. GCMs indicate that rising concentrations of 

greenhouse gases (GHGs) will have significant 

implications for climate at global, regional and local 

scales. Less certain is the extent to which 

meteorological processes at individual sites will be 

affected, yet these potential changes at smaller 

scales are exactly what engineers, researcher, 

modelers, consultants and land managers are most 

concerned about [2]. There are two broad 

approaches to downscaling available: dynamical 

and statistical [3], [4]. Dynamical downscaling 

technique uses high-resolution model called 

regional climate models (RCMs) driven by 

boundary conditions from a GCM and are far more 

computationally demanding [2], [5] than statistical 
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downscaling. Statistical downscaling (SD) also 

called empirical downscaling (ED) methods are 

much more popular than dynamical downscaling 

techniques for deriving future climate scenarios [5].  

Statistical downscaling (Transfer 

functions/Regression based approaches; Synoptic 

weather typing/Weather classification; and 

Stochastic weather generators) involves the 

establishment of empirical relationships between 

historical and/or current large-scale (predictors) 

atmospheric and local (predictands) climate 

variables [6]–[9].The assumption is that the 

relationships developed under the present climate 

conditions are also valid for future climate 

conditions [10]. Once a relationship has been 

determined and validated, future atmospheric 

variables that GCMs project are used to predict 

future local climate variables [5], [11], [12]. 

Statistical downscaling models are used to 

downscale monthly to seasonal climate forecasts, 

from numerical climate models to time series 

datasets for use as inputs in crop simulation or 

impact models. 

 One explanation for limited penetration in 

adaptation planning is that many downscaling 

models are restricted in their use to specialists 

and/or research institutions [2] and development of 

adaptation measures relies on data from climate 

impact models [13]. Researchers such as [14] and 

[2]reported that the Statistical DownScaling Model 

(SDSM) has been applied in different countries in 

independent assessments to test its capabilities. 

Extensive research in the field of climate change at 

the global scale has used the SDSM model for 

downscaling process. Additionally, at regional scale 

studies focusing on the effects of climate change on 

climatic variables and temperature extreme have 

been conducted in East and South-East Asia [15]. 

These studies have shown that SDSM yields 

reliable estimates of extreme temperatures, seasonal 

precipitation totals, areal and inter-site precipitation 

behaviour. Frequency estimation of extreme 

precipitation amounts in dry seasons is less reliable. 

A meta-analysis of SDSM outputs shows a 

preponderance of research in Canada, China and the 

UK, whereas the United States and Australasia 

including Zambia are under-represented. The 

SDSM is a freely available downscaling tool that 

produces high resolution climate change scenarios 

at sites for which there are sufficient daily data for 

model calibration and GCM output to generate 

scenarios of the 21st century. Reliable prediction of 

climate change and its effect are importance for 

identifying appropriate mitigation and adaptation 

strategies [16]. Therefore, the objective of this study 

was to evaluate the adaptability of SDSM weather 

generator in downscaling temperature and 

precipitation using NCEP-re-analysis and HadCM3. 

2 MATERIALS AND METHODS 

2.1 Weather data 

The weather data (1981-2010) for Mount Makulu in 

Zambia (latitude: 15.550
o
 S, longitude: 

28.250
o
Altitude: 1200 m above sea level) used in 

this study was obtained from the Agricultural 

Modern-Era Retrospective Analysis for Research 
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and Applications (AgMERRA) Climate Forcing 

Dataset for Agricultural Modeling. The AgMERRA 

climate forcing datasets were created as an element 

of the Agricultural Model Intercomparison and 

Improvement Project (AgMIP) to provide 

consistent, daily time series over the 1980-2010 

period with global coverage of climate variables 

required for agricultural models [17]. The 

AgMERRA datasets are stored at 0.25°×0.25° 

horizontal resolution (~25km). Using a 30-year 

period to define climatology is a common practice 

and this period has become a key to perform model 

calibration, and evaluations, climate sensitivity 

studies and climate analysis. The World 

Meteorological Organization (WMO) adopted the 

30-year for defining normals. Monthly climatology 

values for the Mount Makulu are presented in 

Error! Reference source not found.. 

2.2 Description of Statistical DownScaling Model 

(SDSM) 

The Statistical DownScaling Model (SDSM) 

coded in Visual Basic 6.0 is best described as a 

hybrid of the stochastic weather generator and 

transfer function methods [10]. The SDSM was 

developed as a regional climate change scenario 

generator to support climate risk assessment and 

adaptation planning [2], [14], [18]. It is a robust 

statistical downscaling technique that facilitates the 

rapid development of multiple, low-cost, single-site 

ensemble scenarios of daily weather variables under 

present and future regional climate forcing [12], 

[18]. Furthermore, it is built on the premise that 

downscaled scenarios should be informed by 

climate models [14]. Additionally, the SDSM model 

also performs ancillary tasks of data quality control 

and transformation, predictor variable pre-

screening, model calibration, weather generation, 

statistical analyses, graphing of climate model 

output and scenario generation [18]. The SDSM 

uses multiple empirical regression equations 

between large-scale (predictor) atmospheric 

conditions and the site observed daily local scale 

(predictand) weather conditions, combined with a 

stochastic element to improve the reproduction of 

daily variability not suitably captured by the large-

scale variables [10], [19], [20].  

 There are two kinds of sub-models in 

SDSM, unconditional and conditional used 

according to the requirement of the predictands. The 

unconditional sub-model is used for an independent 

variable such as temperature and the conditional is 

used for a conditional (dependent) variable like 

precipitation [10]. In conditional models, there is an 

intermediate process between large scale variable 

and local scale weather e.g., local rainfall amounts 

depend on the occurrence of wet-days, which in 

turn depend on large scale predictors such as 

humidity and atmospheric pressure [21].  

2.3 Model Inputs 

Quality observed daily data are required for 

both local-scale (predictand) and large-scale 

(predictor) climate variables to calibrate the SDSM. 

In SDSM version 4.2.9 daily National Center for 

Environmental Prediction (NCEP) predictor 

variables are available from the SDSM portal 

(http://co-

http://www.agmip.org/
http://www.agmip.org/
http://co-public.lboro.ac.uk/cocwd/SDSM/data.html
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public.lboro.ac.uk/cocwd/SDSM/data.html) using 

the site latitude and longitude for the period 1948-

2015 whose grid cell sizes are: 2.5
o
 latitude x 2.5

o
 

longitude coordinates at the center of the cell [14], 

[22], [23]. This new data portal was incorporated 

within the SDSM web-site to facilitate convenient 

global usage of SDSM model. The user can supply 

daily meteorological data (1948-2015) for the study 

site in question. There are 28 predictor variables 

which originate from the NCEP re-analysis. These 

raw and derived variables describe atmospheric 

circulation, thickness, stability and moisture content 

at various levels (near surface, 850 hPa and 500 

hPa) using observations assimilated from stations, 

upper air and satellite measurements between 1948 

and 2015. Precipitation values less than 0.01 

mm/day are set to zero. All daily predictor variables 

are delivered as individual, single column ASCII 

files, bundled by 2.5° x 2.5° grid-box and zipped. 

Predictor variables are available globally except for 

the poles. 

 The Canadian Climate and Data Scenarios 

(CCDS) website (http://ccds-dscc.ec.gc.ca/) 

provides predictors for NCEP, Hadley Centre 

Couple Model version 3.0 (HadCM3; http://ccds-

dscc.ec.gc.ca/?page=pred-hadcm3) and Canadian 

Centre for Climate Modeling and Analysis, 2nd 

version of the coupled Canadian Global Climate 

Model (CGCM2) [24], respectively. The Hadley 

Centre Couple Model version 3.0 (HadCM3; 

http://ccds-dscc.ec.gc.ca/?page=pred-hadcm3) was 

developed and is supported by the Hadley Centre 

for Climate Prediction and Research, United 

Kingdom. The atmospheric component of the 

HadCM3 model has a horizontal resolution at 45
o
 

latitude of 2.5
o
 x 3.75

o
 (approx. 295 km x 278 km) 

and is comprised of 19 atmospheric levels and four 

soil layers [25]. The oceanic component of 

HadCM3 has a horizontal resolution of 1.25
o
 x 

1.25
o
 and comprises 20 levels. The HadCM3 GCM 

is ranked highly (fourth out of 22 CMIP3 models) 

when compared with other GCMs. The simulation 

of HadCM3 assumes the year length in 360 day 

calendar with 30 days per month [26], [27]. The 

model was developed in 1999 and was the first 

coupled atmosphere-ocean which did not require 

flux adjustments [28]. The HadCM3 model was 

used in the IPCC Third and Fourth Assessments and 

also contributed to the Fifth Assessment Reports 

[29]. It also has the capability to capture the time-

dependent fingerprint of historical climate change in 

response to natural and anthropogenic forcings and 

this has made it an important tool in studies 

concerning the detection and attribution of past 

climate changes [29]. 

2.4 Special Report on Emissions Scenarios (SRES) 

In 2000, the IPCC published a set of emissions 

scenarios for use in climate change studies (Special 

Report on Emissions Scenarios, SRES). The SRES 

scenarios were constructed to explore future 

developments in the global environment with 

special reference to the production of greenhouse 

gases (GHGs) and aerosol precursor emissions [30]. 

The Fourth Assessment Reports of the 

Intergovernmental Panel on Climate Change 

suggest that due to the increase in GHG emissions 

http://co-public.lboro.ac.uk/cocwd/SDSM/data.html
http://ccds-dscc.ec.gc.ca/?page=pred-hadcm3
http://ccds-dscc.ec.gc.ca/?page=pred-hadcm3
http://ccds-dscc.ec.gc.ca/?page=pred-hadcm3
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over the last century, average global temperature 

has increased about 0.4 to 0.8
o
C [15], [31]. The 

SRES defined four narrative storylines (A1, A2, B1 

and B2) and these explore alternative development 

pathways, covering a wide range of demographic, 

economic and technological driving forces and 

resulting GHG emissions. There are approximately 

40 different SRES scenarios that are organized into 

families based on population and economic growth, 

which house scenarios that are most similar to each 

other in terms of the assumptions about their driving 

forces during the 21st century for large world 

regions and globally.[32], [33] (Error! Reference 

source not found.). In this study, A2 and B2 

scenarios were selected for climate change 

assessment at Mt Makulu.  

2.5 Selection of predictors 

The selection of predictors in SDSM is an iterative 

process, partly based on the user’s subjective 

judgment [10] while developing predictand-

predictor relationship. As a consequence, the 

predictors should be selected based on both their 

relevance to the downscaled predictand and their 

accurate representation by the climate model [11], 

[12]. Predictors were selected based on a 

combination of the correlation matrix, partial 

correlation and p-value. More details on selection of 

predictor are presented by [34] and [18]. All input 

and output files in SDSM model are in text format 

only and individual predictor and predictand files 

are one variable to each file. Different studies have 

shown that 1-3 large scale variables are enough to 

capture the variation of a predictand during 

calibration [10], [34]. The most commonly used 

predictors for downscaling minimum and maximum 

temperature are the mean sea level pressure, the 

vorticity at the surface, 850 and 500 hPa, and the 

850 hPa geopotential height whilst surface zonal 

velocity, meridional velocity at 850 hPa, surface 

vorticity, geopotential height and specific humidity 

at 500 hPa are used to downscale precipitation [35]. 

As the number of predictors increases in the 

regression equation, the chances of multiple co-

linearity also increase [34]. 

2.5 Calibration, validation and performance of the 

SDSM model 

Two series of predictor datasets were used to 

calibrate and generate future climate scenarios: 

NCEP re-analysis data from SDSM portal, and 

NCEP and HadCM3 from CCDS. Re-analysis and 

observed time series datasets are required to define 

and calibrate the SDSM model [36]. The scenario 

results were analyzed to evaluate the effect of the 

interpolation procedure and to see if the results of 

the two datasets (NCEP re-analysis and HadCM3) 

outputs are consistent with the NCEP re-analysis as 

a reference from SDSM portal. Three measures of 

calibration fit provided by SDSM can be used: the 

fraction of explained variance (Pearson RSquared); 

the standard error of the estimate (SE); and the 

Durbin-Watson (to detect presence of 

autocorrelation in model residuals, where a value 

near 2 indicates no autocorrelation, 0 and 4 are 

positive and negative autocorrelation, respectively). 

In this study only the fraction of explained variance 

and the standard error of the estimate are presented. 
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The calibration results in SDSM are exhibited with 

percentages of explained variance computed with 

the equation provided by [37] [Equation 1] where Si 

is the simulated value for day i, Oi is the observed 

value at day i, Õ is the mean of the observation S 

for the period and n is the number of days of the 

period of SDSM run and observed data. 

  [Eq. 2]  

In the SDSM model, a recursive algorithm is 

implemented to compute partial correlation using 

[Equation 3]. This recursive algorithm has a 

limitation, i.e. when the partial correlation between 

two variables is computed; the number of variables 

that can be used is limited to 12. However, the 

number of NCEP predictors used for partial 

correlation analysis is usually about 26. Summary 

statistics and frequency analysis are the means 

provided by SDSM for interrogating both 

downscaled scenarios and observed climate data. 

  [Eq. 4] 

The other statistical indices used to evaluate the 

performance of the SDSM model were correlation 

(r), coefficient of determination (R
2
), Root Mean 

Square Error (RMSE) and mean absolute error 

(MAE). According to [38], the d-stat of a ―good‖ 

model should approach unity and the RMSE 

approach zero. The MAE and RMSE are among the 

best overall measures of model performance, as 

they summarize the mean difference in the units of 

observed and predicted [38] as presented in the 

equations below ([Equation 5] and [Equation 6]). 

Statistics defined by [38] should be used as an 

agreement index instead of correlation coefficients 

which has limitations. 

  [Eq. 7] 

  [Eq. 8] 

 

2.6 Baseline and future climate scenarios 

downscaling 

The HadCM3 has two scenarios A2 and B2. For 

each scenario, twenty ensembles of synthetic daily 

time series data were generated for 139 years (1961-

2099). The SDSM supports A2 and B2 scenarios for 

the HadCM3 GCM. Climate scenarios were 

generated for the current and future scenarios using 

SDSM v4.2.9. The NCEP-reanalysis and HadCM3 

GCM were used to calibrate and generate transient 

weather data for 2020s (20011-2040), 2050s (2041-

2070), and 2080s (2071-2099), respectively. The 

calibration results are used based on the assumption 

that predictor-predictand relationship under the 

current condition remains valid for future climate 

change conditions [39]–[41]. 

3 RESULTS AND DISCUSSION 

3.1 Screening of predictors 

The NCEP re-analysis predictors from SDSM Portal 

and CCDS were used to calibrate the SDSM model 

as presented in Error! Reference source not 
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found.. These are selected through screening using 

statistical downscaling model. The future 

projections discussed here are based upon the A2 

and B2 SRES scenarios. The multi-model total 

precip, mean tmin, and tmax are associated with 

uncertainty for 2020s, 2050s and 2080s relative to 

1981-2010 under A2 and B2 SRES scenarios.  

3.2 Calibration tests 

The calibration of the SDSM involved the 

establishment of statistical relationships between 

the selected predictors and predictands. In this study 

the selected predictors are presented in Error! 

Reference source not found.. To build confidence 

in the performance of SDSM, precipitation (precip) 

monthly totals and mean minimum (tmin) and 

maximum (tmax) temperature are compared 

graphically with the observed data. The graphical 

comparisons below are able to identify pattern and 

variations captured by the model [42]. The precip, 

Tmax and Tmin between the observed and 

generated data during the calibration are illustrated 

in Error! Reference source not found. and Error! 

Reference source not found. for the study site. For 

tmax and tmin, the SDSM simulated NCEP (1948-

2015) and NCEP (1961-2001) re-analysis predictors 

well, deducing that future projections would also be 

well simulated. 

The adaptability of SDSM in providing 

quality downscaled temperature and precipitation 

time series data relies on model calibration, which 

is described with percentages of explained variance 

(Error! Reference source not found. and Error! 

Reference source not found.). The percentages of 

explained variance are higher for tmax and tmin 

[43], which is more spatially conservative than 

precipitation as presented in Error! Reference 

source not found. and Error! Reference source 

not found.. The computed values for precip are 

very low (0.1-73.6%). As a consequence, these 

results are similar to those of other studies [44]. 

During the calibration of SDSM using NCEP re-

analysis predictors, two indicators: Explained 

Variance and Standard Error (SE) were used to 

check the model's performance [34]. The mean 

explained variances, calculated from NCEP re-

analysis 1961-2001 and 1948-2014 ranges between 

36.4-66.0% and 46.1-71.8% for Tmax and Tmin, 

respectively and the mean standard error lies 

between 0.637-3.199, 0.731-1.285 and 0.119-

12.442 for Tmax, Tmin and precip, respectively. 

According to [43], it is not possible to have 

acceptable levels of explained variance as SDSM 

model skills differs for diverse geographical 

location even for predictors. The computed results 

are satisfactory and comparable to some previous 

studies conducted by researchers such as [10] and 

[45]. A study in Toronto that used SDSM reported 

mean values of 73% and 72% for maximum and 

minimum temperatures and 28% for precipitation 

[10], [44]. The SDSM algorithm were applied in 

mountainous regions of Japan and obtained seasonal 

values varying from 70% to 90% for temperature, 

and from 15% to 45% for precipitation [46], [45]. 

[47] tested the SDSM model in the Greater 

Montréal region and obtained values between 71% 
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and 79% for temperature, and between 6% and 10% 

for precipitation.  

In this study, the calibration of the SDSM 

using NCEP re-analysis (1948-2014) and NCEP re-

analysis (1961-2001) was better although generated 

precipitation was over-estimated for all the months 

and this affected all generated scenario for 2020s, 

2050s and 2080s. The NCEP re-analysis (1961-

2001) and NCEP re-analysis (1948-2014) statistic 

for the calibration performance are presented in 

Error! Reference source not found. for precip, 

Tmax and Tmin. During calibration of precip, the 

generated precip was over-estimated for both NCEP 

re-analysis data sets. The d-stat, R and R
2
 for NCEP 

re-analysis (1961-2001) and NCEP re-analysis 

(1948-2014) as presented in Error! Reference 

source not found. are unit. The results indicate that 

the calibration performance of SDSM model was 

excellent. 

3.3 Future climate scenarios downscaling  

In this study, future climate scenarios were 

generated for precip, Tmax and Tmin at Mt Makulu. 

In SDSM-based statistical downscaling method, the 

A2 and B2 emission scenarios from HadCM3 were 

used. The regression equations established during 

the calibration process of SDSM were used to build 

the current (1981-2010) and future climate 

scenarios for 2020s (2011-2040), 2050s (2041-

2070) and 2080s (2071-2099). 

3.3.1 Temperature 

The future projections discussed here are 

based upon the HadCM3 A2 and B2 SRES 

scenarios. The monthly mean Tmin and Tmax under 

A2 and B2 scenarios are shown in Error! 

Reference source not found. and Error! 

Reference source not found.. Projected annual 

mean Tmin rise for Mount Makulu would be 

0.203
o
C, 0.563

o
C and 1.032

o
C while the tmax 

would be 0.177
o
C, 0.462

o
C and 0.910

o
C in 2020, 

2050 and 2080 under A2 scenario, respectively. The 

analysis shows that projected mean Tmin and Tmax 

would increase by 0.192
o
C, 0.409

o
C and 0.708

o
C 

and 0.132
o
C, 0.389

o
C and 0.618

o
C in 2020, 2050 

and 2080 under B2 scenario from the baseline 

(1981-2010), respectively (Error! Reference 

source not found.). The temperature rise is with 

reference to the mean of all ensembles of the 1981-

2010 normal. It is worth noting that the computed 

values based on A2 and B2 scenarios shows 

increasing trends of Tmax and Tmin at each time 

slice (2011-2040, 2041-2070 and 2071-2099). Both 

scenarios show different increase in temperature for 

the future scenarios. Literature revealed indicated 

that the mean annual temperature in Zambia has 

increased by 1.3
o
C since 1960, an average of 0.29

o
C 

per decade [48]–[50]. [51] agrees with the finding 

of this study that projections from GCMs suggest an 

increase in temperature. Climate change 

assessments for Zambia also suggest that projected 

mean temperatures (between 2010 and 2070) are set 

to increase relative to baseline mean temperatures 

(1970 - 2000) by approximately 2°C (HadCM3 

GCM).  

According to IPCC, global temperature 

change under B2 would be 1.4
o
C (2050), 2.7

o
C 
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(2100) and under A2 it would be 1.4
o
C (2050), 

3.8
o
C (2100). On the other hand, IPCC observed 

that, the A2 and B2 scenario have temperature 

changes in the range of 2.0-5.4
o
C and 1.4-3.8

o
C, 

respectively. The study results indicate that the 

increases in Tmin and Tmax are below the ranges 

computed by IPCC under A2 and B2 SRES 

scenarios (Error! Reference source not found.). 

On a global scale the mean annual surface 

temperature has increased over the past century by 

0.6°C [52]. The generated future climate scenarios 

are based on a set of key assumptions on 

international geopolitics, change on economic 

development and population growth rate and 

technological changes. These assumptions are 

dependent on the local dynamics of the system that 

cannot be accurately described [53]. On the other, 

the Tmin variance shows a decreasing trend (0.047 

[2020s], -0.441 [2050s], -1.164 [2080s]) while, the 

Tmax variance shows a decreasing (0.065 

[baseline], -0.013 [2020s], -0.334 [2050s]) and 

increasing trend (0.476 [2080s]). 

3.3.2 Precipitation 

The monthly total and variance of precipitation 

values were over-estimated (Error! Reference 

source not found.) compared to the observed 

values. Impacts researchers such as [54] are urged 

to use caution when using downscaled monthly 

precipitation values from SDSM or any other 

regression based downscaling studies. The analysis 

shows that precipitation amounts would increase 

under A2 by 3.741% (2020s), 15.604% (2050s) and 

28.257% (2080s). On the other hand, precipitation 

amounts would increase under B2 scenario by 

5.837% (2020s), 10.205% (2050s) and 19.312% 

(2080s) (Error! Reference source not found.). 

Results also indicate that the number of days with 

precipitation and the amounts (mm/year) would 

increase as presented in Error! Reference source 

not found.. However, literature reviewed shows 

that in SDSM daily precipitation amounts at 

weather stations is the most problematic predictand 

variable to downscale because amounts at 

individual sites are relatively poorly resolved by 

regional-scale predictors and research is on-going to 

address this limitation [12], [18], [21], [35]. This 

problem arises due to the generally low 

predictability of daily precipitation amounts at local 

scales by regional forcing factors. Other factors 

leading to complexity of modelling precipitation is 

related on some characteristics specifically 

intermittency, rain extremes, high rain rate 

variability and multiple scaling regimes. The 

unexplained behaviour is currently modelled 

stochastically within SDSM by artificially inflating 

the variance of the downscaled series to accord 

better with daily observations. 

3 CONCLUSION 

Climate parameters downscaled were daily 

Tmin, Tmax and precipitation using the HadCM3 

GCM. The calibration results of the SDSM using 

NCEP re-analysis data for Tmin and Tmax 

demonstrated that the model could be used in 

generating synthetic weather data for the current 

and future climate scenarios. The downscaled 
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scenarios in this study were generated using only 

one GCM model and A2 and B2 scenarios. The 

generated future scenarios of Tmax, and Tmin and 

precip generally showed an increasing trend relative 

to the baseline period (1981-2010). The GCM under 

investigation was HadCM3 with A2 and B2 

scenarios. In both HadCM3 SRES scenarios, the 

Tmax, and Tmin and precipitation would increase. 

In general A2 scenario predicted the greatest 

changes in Tmax, Tmin and precipitation by the end 

of the century. The changes in Tmax, and Tmin and 

precipitation would affect crop growth rates, 

photosynthesis, evapotranspiration, as well as soil 

water and nutrient availability. The outputs of 

downscaled future scenarios for climate change 

impact assessment are highly dependent on the 

input data and uncertainty of the models. The 

generated future climate scenarios are based on a set 

of key assumptions on international geopolitics, 

economic structure and population growth rate and 

technological development. SDSM may be used to 

generate long time-series of weather data at local-

scale suitable for climate risk assessment and 

adaptation planning. 
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Figure 1: Monthly precipitation and temperature 

 

Table 1: CO2 concentrations (ppm) for selected climate scenarios specified in the Special Report on Emissions 

Scenarios (SRES) [55], [56] 

Scenario Key assumption 

CO2 concentration 

2011-2030 2046-2065 2081-2100 

B1 (―low‖ GHG 

emission 

scenario‖) 

Population convergence throughout the world, 

change in economic structure (pollutant 

reduction and introduction to clean technology 

resources). Global environmental 

sustainability 1.1 - 2.9
o
C 410 492 538 

A1B (―medium‖ 

GHG emission 

scenario) 

Rapid economic growth, maximum population 

growth during half century and after that 

decreasing trend, rapid modern and effective 

technology growth. Rapid economic growth 

(groups: A1T; A1B; A1Fl) 1.4 - 6.4
o
C 418 541 674 

A2 (―high‖ GHG 

emission 

scenario) 

Rapid world population growth, 

heterogeneous economics in direction of 

regional conditions throughout the world. 

Regionally oriented economic development 

2.0 - 5.4
o
C 414 545 754 

B2 

B2 describes a world with continuously 

increasing global population, at a rate lower 

than A2, intermediate levels of economic 

development, and less rapid and more diverse 

technological change than in the B1 and A1 

storylines. Local environmental sustainability 

1.4 - 3.8
o
C 367 478 615 

Note: CO2 concentration for the baseline scenario, 1960-1990, is 334 ppm 
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Table 2: Partial correlation between the predictand and predictor for precipitation and temperature 

 P
re

d
ic

t

o
rs

 

NCEP 1961-2001 NCEP 1948-2015 

Predictands Predictands 

Tmax   Tmin   Precip   Tmax   Tmin   Precip   

PC 0.05 PC 0.05 PC 0.05 PC 0.05 PC 0.05 PC 0.05 

dswr             0.088 0.0000 0.042 0.0000     

Mslp -0.39 0.0000 -0.334 0.0000     -0.138 0.0000 -0.089 0.0000     

p_u     -0.134 0.0000     -0.048 0.0000         

p_v -0.167 0.0000 -0.107 0.0000                 

p_z 0.184 0.0000 0.196 0.0000         0.044 0.0000     

p5_u                 -0.043 0.0000     

p500 -0.114 0.0000 0.22 0.0000     -0.05 0.0000         

p8_v     0.13 0.0000     -0.034 0.0008         

p850 0.316 0.0000 0.103 0.0000     0.105 0.0000 0.042 0.0000     

p500         0.118 0.0000             

p850         -0.151 0.0000             

rhum                     -0.091 0.0000 

shum                     0.121 0.0000 

NB: PC = Partial correlation; 0.05 = p-value 

Key of predictors: 

mslp  mean sea level pressure 

p_u  surface zonal velocity 

p_v  surface meridional velocity 

p_z  surface vorticity 

p8_v  meridional velocity  

p500  geopotential height at 500 hPa  

p850  geopotential height at 850 hPa 

pr500  Relative humidity at 500 hPa 

 

 

 
Figure 2: Calibration tests for NCEP re-analysis 

(1948-2015)  

 
Figure 3: Calibration tests for NCEP re-analysis 

(1961-2001) 
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Table 3: Performance of SDSM during the calibration periods (1981-2010) 

NCEP 1948-2014 

 

Tmax 

 

Tmin 

 

Precip 

 Month Rsquared Standard Error Rsquared Standard Error Rsquared Standard Error 

Jan 0.364 2.213 0.552 0.731 0.002 10.304 

Feb 0.424 1.891 0.461 0.739 0.001 10.534 

Mar 0.555 1.737 0.643 0.851 0.015 8.202 

Apr 0.635 1.456 0.661 1.019 0.010 7.649 

May 0.638 1.442 0.702 1.030 0.084 2.153 

Jun 0.610 1.540 0.671 1.114 0.103 0.538 

Jul 0.660 1.595 0.654 1.110 0.705 0.516 

Aug 0.639 1.748 0.716 1.190 0.736 0.330 

Sep 0.528 2.015 0.670 1.285 0.327 3.994 

Oct 0.445 2.481 0.585 1.281 0.005 7.511 

Nov 0.416 3.199 0.549 1.246 0.001 11.014 

Dec 0.437 2.911 0.515 0.907 0.001 12.442 

Mean 0.529 2.018 0.615 1.042 0.166 6.266 

Table 4: Performance of SDSM during the calibration periods (1981-2010) 

 NCEP 1961-2001 

 Tmax 

 

Tmin 

 

Precip 

 Month Rsquared Standard Error Rsquared Standard Error Rsquared Standard Error 

Jan 0.364 2.213 0.552 0.731 0.006 10.286 

Feb 0.423 1.893 0.465 0.736 0.005 10.512 

Mar 0.556 1.736 0.644 0.850 0.001 8.259 

Apr 0.633 1.459 0.664 1.013 0.010 7.647 

May 0.637 1.445 0.705 1.030 0.008 2.241 

Jun 0.610 1.540 0.671 1.114 0.047 0.555 

Jul 0.659 1.598 0.655 1.109 0.984 0.119 

Aug 0.635 1.757 0.718 1.187 0.458 0.474 

Sep 0.527 2.015 0.674 1.278 0.102 4.613 

Oct 0.444 2.484 0.586 1.278 0.005 7.511 

Nov 0.417 3.186 0.549 1.246 0.011 10.961 

Dec 0.436 2.913 0.516 0.906 0.004 12.423 

Mean 0.528 2.020 0.616 1.040 0.137 6.300 

Table 5: Performance of SDSM during calibration 

Predictands NCEP re-analysis (1961-2001) NCEP re-analysis (1948-2014) 

RMSE d-stat r R
2
 MAE RMSE d-stat r R

2
 MAE 

Precip 8.34 0.99 1.00 1.00 8.34 12.91 0.99 1.00 1.00 8.24 

Tmax 0.13 1.00 1.00 1.00 0.10 0.12 1.00 1.00 1.00 0.10 

Tmin 0.10 1.00 1.00 1.00 0.08 0.08 1.00 1.00 1.00 0.06 
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Figure 4: Monthly tmax under A2 and B2 scenarios baseline, for 2020, 2050 and 2080 

 

 

Figure 5: Monthly tmin under A2 and B2 scenarios for baseline, 2020, 2050 and 2080 

 
Figure 6: Future monthly Tmax, Tmin and precip change under A2 and B2 scenarios for 2020, 2050 and 2080 
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Figure 7: Monthly precipitation under A2 and B2 scenarios for 2020, 2050 and 2080 

 

Table 6: Days with and amount of precipitation 

Period Number of days with precip Total precip (mm/year) 

Baseline 86.0 897.47 

A2 2020s 201.5 943.50 

A2 2050s 208.0 1050.70 

A2 2080s 211.0 1151.60 

B2 2020s 203.0 941.20 

B2 2050s 205.0 977.10 

B2 2080s 207.0 1072.00 

 

 

 

 

 


